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Abstract: Ubiquity, heterogeneity and dense deployment of sensors have yielded the Internet of
Things (IoT) concept, which is an integral component of various smart spaces including smart
cities. Applications and services in a smart city ecosystem aim at minimizing the cost and
maximizing the quality of living. Among these services, waste management is a unique service that
covers both aspects. To this end, in this paper, we propose a WSN-driven system for smart waste
management in urban areas. In our proposed framework, the waste bins are equipped with sensors
that continuously monitor the waste level and trigger alarms that are wirelessly communicated
to a cloud platform to actuate the municipal agents, i.e., waste collection trucks. We formulate an
Integer Linear Programming (ILP) model to find the best set of trajectory-truck with the objectives
of minimum cost or minimum delay. In order for the trajectory assistance to work in real time,
we propose three heuristics, one of which is a greedy one. Through simulations, we show that the
ILP formulation can provide a baseline reference to the heuristics, whereas the non-greedy heuristics
can significantly outperform the greedy approach regarding cost and delay under moderate waste
accumulation scenarios.

Keywords: wireless sensor networks; Internet of Things; smart cities; waste management; urban
planning; optimization

1. Introduction

Smart cities operate on the foundation of information and communication technologies in order to
bridge citizens and technology with the ultimate goal of improving quality of life and sustainability [1].
Moreover, smart cities manage city assets including, but not limited to, the local departments,
information systems, libraries, schools, hospitals, waste management systems and transportation
systems [2]. The most commonly-known smart city services are smart transportation, smart grid, smart
parking, smart health and smart lighting [3]. Wireless Sensor and Actuator Networks (WSAN) facilitate
the manageability and efficiency of smart city services [4–7]. Most researchers define the smart city
paradigm as an application of the Internet of Things (IoT) concept [8]. Besides, the high penetration
rate of the IoT technologies, which are used in all the activities of everyday life, is significantly
increasing [9].

The Internet of Things (IoT) has been one of the major research topics in the Information and
Communication Technology (ICT) field in various applications [9]. Indeed, IoT and WSAN play the
key roles in the realization of smart cities, and as stated in [10], a smart city is comprised of water,
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energy, waste, transportation and information and communication aspects, which are orthogonal
to each other. One of the key areas to build sustainable cities is waste management, which stands
for acquiring the waste status in the bins through volumetric sensors [11]. Waste accumulation is
inevitable in any life cycle [12]. Therefore, waste management is considered to be a factor that directly
impacts the quality of living for citizens. Recent research reports that the growth rate of the Municipal
Solid Waste (MSW) amount is higher than the urbanization growth rate [13]. In developing countries,
the increase of the municipal solid waste generation is correlated with rapid urbanization, an increase
in the population and living standards [14]. In the field of waste management, there have been several
studies focused on different aspects and challenges [13–19]. To enable dynamicity in the garbage
collection, garbage truck fleet management and determining collection routes, IoT is pointed out as an
inseparable component of a waste management system in a smart city infrastructure [20]. To ensure
the effectiveness of waste management services, the IoT and WSAN data regarding the waste levels
throughout a municipal region call for effective and efficient decision-making systems [21].

In this paper, we propose a WSN-driven smart waste management solution for a smart city setting.
To this end, we propose a heuristic method for efficient planning of waste collection routes in the
presence of a WSN that raises a set of alarms to initiate/trigger waste collection. We compare the
heuristic to a baseline approach, which plans waste management solely based on the next closest
location in town. The baseline approach is called Closest Vehicle First (CVF). Two heuristic solutions are
developed to improve the naïve approach: (1) Collect based on Upper Threshold (CUT) and (2) Collect
based on Upper and Lower Threshold (CULT). The two approaches work similarly; however, CUT
keeps adding all the bins to the truck list even if they have not triggered the alarms, whereas CULT
aims to collect only the bins with waste levels higher than the lower threshold. Besides, the CUT
approach utilizes an upper threshold for the load level of waste bins, whereas the second heuristic
takes upper and lower load thresholds into consideration. Through simulations, we show that CUT
and CULT improve the baseline solution by up to 16.7% and 8.3% in terms of management cost and
by 4.6% and 3% regarding collection delay, respectively. Furthermore, to evaluate the optimality of
our heuristic methodology, we formulate an optimization model for the planning of optimal routes
for waste collection. Under various small-scale scenarios with different pre-determined sensor-driven
alarm thresholds, we show that the proposed heuristic solution can achieve the operation within
85.75% of the solution in real time. The proposed approaches, for the first time, consider the waste
arrival rate so as to improve the waste management routing problem. Moreover, considering the waste
arrival implicitly gives an indication of the behaviour of filling up the waste bins. Hence, the truck can
be directed to collect the bins even if they have not triggered the alarms. Furthermore, the penalty cost
considered in the model plays a key role along with the waste arrival rate because overflowed bins are
penalized, which would lead to a significant increase in the cost.

This work is organized as follows. In Section 2, we briefly discuss the state of the art in WSN-based
waste management in smart cities. Section 3 describes the system model and defines the smart waste
management problem. Section 4 provides a thorough explanation of the optimization model for
WSN-driven waste management in a smart city setting, while Section 5 presents the baseline approach
to address waste management and our proposed heuristic in detail. Section 6 shows numerical results
under various test cases by comparing the heuristic to the baseline solution and the optimization
model. Finally, Section 7 concludes the article and gives future directions.

2. Related Work and Motivation

Waste management has been of interest for various researchers in the sustainability and smart
cities research field. Urban populations are increasing and causing a change in the consumption
patterns. Increasing urbanization speed and scale has caused at least 50% of the global population to
reside in urban regions. Moreover, by the year 2050, this ratio is expected to be 86% and 64% of the
population for developed and developing countries, respectively [22]. Some studies evaluated different
scheduling and routing approaches and their relationships to the fundamental characteristics of the
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solid waste management system [23]. A comprehensive review of waste management systems for
residential units was presented in [24]. Utilization of sensors is particularly considered for monitoring
critical parameters such as moisture and temperature instead of the load or residual capacity of waste
bins. Such a system can be extended to a city-/municipality-wide monitoring and actuation system
through networked sensors and by exploiting the benefits of computational and storage capabilities in
the cloud. To this end, we identify the study in [12] as the closest work to ours from the architectural
standpoint. In the reference study, a cloud-based waste management system was introduced with the
objective of reducing gas/fuel consumption and improving efficiency (i.e., total delay). According to
the proposed system, waste bins in a metropolitan area are equipped with sensors that sense and
communicate the load levels of the bins to the cloud platform for further processing and decision
making. The decision-making module of the proposed system resides in the cloud and provides
services for waste collection, route optimization, recycling and disposal, food industry, taxation and
even energy generation through waste.

In [20], high priority areas were formed, e.g., schools and hospitals, and priority was given to
the bins close to those areas when collecting waste. A dynamic routing process was employed to
serve high priority bins immediately. The authors studied four models, namely: (1) the dedicated
truck model, (2) detour model, (3) minimum distance model and (4) reassignment model. In the same
study, a sector-based approach was formed to partition the area into sectors to which bins and trucks
were assigned. However, in some models, trucks can be allowed to serve bins that are located in
other sectors. The models listed above were studied under real and synthetic data obtained from the
municipality of Saint Petersburg, Russia. The performance of the models was presented with respect
to CPU time to form the routes, collected load, distance, routing time, response time and fuel quantity.
The results were obtained by varying the number of sectors, prioritizing bins under various scenarios,
number of trucks per sector and truck capacity. The study reported that in most cases, the reassignment
model outperformed its counterparts regarding the above-mentioned performance metrics. It is worth
noting that if a waste management cost function was formulated by incorporating all these metrics,
the performance evaluation could be more useful for the overall system.

In [25], the problem of waste management was addressed by planning vehicle routes to collect
solid waste in a municipality in Finland. The trucks that collected the bins had capacities that could not
be exceeded. In the region under consideration, 30,000 bins were considered to be located in densely-
and sparsely-populated districts. Furthermore, different types of municipal solid waste and bins were
also considered.

Among the researchers who have contributed to the field of waste management and
monitoring, there are exemplary ones who have applied machine learning approaches to their
proposals. In [26], level detection for solid waste bins was proposed along with a grey level
co-occurrence-based classification.

In [27], the authors aimed to locate an optimal landfill site to achieve minimum economical and
socio-environmental effects and cost for the waste management system in the city of Regina (SK,
Canada) by integrating Multi-Criteria Decision Analysis (MCDA) with Inexact Mixed Integer Linear
Programming (IMILP).

In [28], a real-time framework was developed to monitor the bin status and condition.
The monitoring application was based on decision algorithms for sensing solid waste arrival. The route
optimization for waste management was envisioned to translate into the minimization of cost and
carbon emissions. The authors aimed to minimize the collection cost by performing route optimization
in Municipal Solid Waste Collection (MSWC) [29]. The data used in the optimization study was
obtained from 39 districts in the city of Trabzon, Turkey. The experiments involve multimedia data that
were acquired through video cameras installed in the vehicles. The integration of the Route View ProTM

optimization tool with the Geographic Information System (GIS) enabled finding the shortest route.
The proposed approach was shown to reduce the total solid waste collection by 24% via route optimization.
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The authors in [30] proposed to utilize bins’ sensors to transmit real-time data of the bins’ fill-level
to overcome the uncertainty regarding the amount of waste in the bins. In order to ensure improved
efficiency for waste collection, three different operational management approaches were presented:
(1) the limited approach, which was based on a cluster first-route heuristic, where the visited bins
were selected by their minimum fill-level threshold in each day; after the selection of bins to be
collected was defined, a Capacitated Vehicle Routing Problem (CVRP) model was run to optimize
each vehicle route in order to achieve minimum transportation cost; (2) the smart collection approach,
in which an MILP formulation determined the best collection sequence of bins on each day based on
the maximization of the profit; (3) the smarter collection approach, where a heuristic was integrated
with the same MILP model to choose the best days that maximized the profit. Out of these approaches,
the study concluded that the smart collection was the most efficient and generic one. It is worth noting
that the MILP model can also be improved by considering the waste arrival rate and/or a penalty cost
that may be applied to the overflowed bins, which can significantly affect the profit.

In [31], Wireless Monitoring Units (WMU) were installed in the waste bins where each WMU was
equipped with wireless sensors that monitored the remaining capacity of each bin and reported it to
the wireless access points for further processing in a central monitoring station. It was shown that
the remaining capacity of a waste bin could be predicted with an accuracy of 98.3%, where a wireless
access point could serve a set of WMUs that resided within the coverage of 27 m in diameter.

It is worth noting that data analytics and artificial intelligence methods play a crucial role in
profiling the waste arrival, collection and accumulation processes. Therefore, sensory data need
to be coupled with data analytics solutions and methodologies. However, this is included in our
future agenda. A thorough survey of data analytics approaches for management and profiling of waste
management in smart cities was presented in [32].

From the standpoint of the methodology, the study in [30] presented the closest concept to our
approach in this article. In the cited work, the authors tackled the problem of obtaining actual load
levels in the waste bins through the use of sensors and feeding the information into an optimization
model or a sub-optimal heuristic. To this end, three solutions were formulated, where: the first one
applied a naive minimum load threshold; the second one aimed to obtain the best collection order of
the bins; as an alternative, the authors introduced a further improved model that considered the time
dimension, i.e., when and in what order to collect the bins. One of the open issues, as stated by the
authors, in their proposed model was the utilization of the waste arrival and accumulation in the bins
in the problem. Furthermore, as suggested by the authors, cost factors may vary in time and type.
With these in mind, in this article, we incorporate various cost factors into the optimal waste collection
model, as well as estimated load levels in the bins.

3. System Model

The waste management problem addressed by our proposed model uses real-time information
of the waste fill-levels of the bins to define dynamic routes for each truck. This problem has the
following components and inputs: given a complete undirected graph with a set of M waste bins and
a distance of ∆ij between any two bins, a central station with a set of N trucks where all the trucks
start and end their routes and a disposal area where the trucks dump the waste collected from the bins.
Before proceeding with the details of the model, it is worth presenting the notation of the system.

Each waste bin i is defined with a maximum capacity Λi and is equipped with communication
capability to transmit the real-time waste level of the bin measured by an ultrasonic sensor. The sensors
inside the waste bins transmit the fill-levels of the bins in m3s, which is then transformed into kilograms.
Furthermore, this particular study is considered for urban areas; thus, it is reasonable to model the
waste arrival rate by the Poisson distribution in the cities. Moreover, we present in the Result Section
the performance of the system under aggressive arrival rates. However, under significantly light
arrival rates, CUT ensures that all the bins on the same assigned route of a truck will be collected
regardless of whether or not they have raised an alarm. In the case of an overflow at bin i, a penalty fee
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of ρi is applied. Moreover, each truck t has a pre-determined number of workers (ht) and a maximum
capacity (Ct). All trucks are equipped with two-way communication capability with the base station.

The system model described in Figure 1 shows that all the trucks are initially located in the
central station. Once the waste arrival to bin i accumulates and reaches a pre-defined threshold Ψi,
an alarm denoting the call for waste collection is triggered and sent to the base station. The base station
communicates with the cloud to process the data and to find the optimal route to collect the waste
in loaded bins including the bin that alarmed. The cloud sends the optimal route to truck t through
the base station. At the end of the collection, all trucks stop at the disposal area to empty the waste
collected from the bins. The objective is to obtain a list of waste bins that are potentially to be visited,
and to obtain the optimal visiting trajectory for each truck t, which will minimize the cost value, as well
as the collection delay. Referring to the description of the problem, three dynamic waste collection
methods are presented in Section 5.

Figure 1. An overview of the system model.

4. Optimization Model for WSN-Based Waste Management in Smart Cities

This section formulates an Integer Linear Programming (ILP) model for the optimal waste
management in a smart city in the presence of coordinated wireless sensors for monitoring the waste
status at multiple locations. Before we proceed with the details of the optimization, it is worth
presenting the notation of the model. The inputs, variables and outputs used in the MILP model are
listed and detailed in Table 1.
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Table 1. Basic notations used in the system description. Notations are grouped into three categories: Constants, inputs and variables.

Notations Equations Sections Definition

D 2; 43 4.1; 5.1 Cost of (un)dumping per bin (from a bin to a truck) (AC)
H 2; 43 4.1; 5.1 Cost of human resource (AC)/h
G 2; 43 4.1; 5.1 Cost of gas mileage (AC)/km
S 6; 26; 47 4.1; 4.2; 5.1 Average speed in the town (km/h)
W 2; 26 4.1; 4.2 Time needed to collect waste from a bin (minutes)
N 2 4.1 Total number of trucks
M 2; 13; 36; 43 4.1; 4.2; 5.1 Total number of bins
UB 21; 38 4.1; 4.2 The upper bound of variable Pi
Ψi - 5 Upper threshold for the waste amount of bin i
ψi - 5 Lower threshold for the waste amount of bin i

ρi 2; 43 4.1; 5.1 Penalty of bin i per kg (AC)
Rt 6; 26; 47 4.1; 4.2; 5.1 Time needed to empty truck t at the dumping area and prepare it for the next trip (minutes)
h̄ 5; 26; 47 4.1; 4.2; 5.1 Distance from the dumping area to the central station (meters)
∆ij 5 4.1 Distance between bin i and bin j (meters)
tij 20; 26 4.1; 4.2 Time needed to move from bin i to bin j (minutes)
∆i 8; 32 4.1; 4.2 Distance from bin i to the dumping area (meters)
ri 7; 33 4.1; 4.2 Distance from the central station to bin i (meters)
λi 17; 23; 37 4.1; 4.2 Average waste arrival at bin i (kg)
ht 2; 43 4.1; 5.1 Number of workers in truck t
Λi 2; 43 4.1; 5.1 Capacity of bin i (kg)
δi 17; 37 4.1; 4.2 Initial load for bin i (kg)
Ct 17; 37 4.1; 4.2 Capacity of truck t (kg)
Ti 20 4.1 Time from the central station to first bin i (minutes)
ct - 5 Initial load of truck t (kg)
K - 5 Threshold for the count of bins that have alarmed
k - 5 Number of bins that have alarmed
Ai - 5 Alarm status of bin i
B - 5 List of bins that have alarmed
Zt - 5 Route of truck t
Lij - 5 List of bins on the shortest path between bin i and j
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Table 1. Cont.

Notations Equations Sections Definition

Qt
in 7–21; 27–29; 31–38 4.1; 4.2 The binary variable is one if bin i is the n-th collected bin by truck t

Xnt
ij 5; 9; 10; 11; 16; 26–30 4.1; 4.2 The binary variable defines the multiplication of Qt

in by Qt
jn+1

Ht
in 17; 18; 19; 37; 38; 39 4.1; 4.2 The integer variable defines the multiplication of Pi by Qt

in
Vt

jn 20; 21; 22; 23 4.1 The integer variable defines the multiplication of Pi by Qt
jn−1

dt 2; 3; 5; 6; 44 4.1; 5.1 The integer variable defines the total distance covered by truck t (meters)
d 2; 3; 43; 44 4.1; 5.1 The integer variable defines the total distance covered by Ntrucks (meters)
It 2; 47 4.1; 4.2; 5.1 The integer variable defines the distance from the central station to first bin of truck t (meters)
Ît 2; 47 4.1; 4.2; 5.1 The integer variable defines the distance from last bin of truck t to the dumping area (meters)
τt 4; 6 4.1 The integer variable defines the total time of truck t (minutes)
τ 2; 4; 43; 45 4.1; 5.1 The integer variable defines the total time of the Ntrucks (minutes)
bt 15; 16; 30; 34; 45 4.1; 4.2; 5.1 The integer variable defines the total number of bins collected by truck t
Fi 2; 23; 43 4.1; 5.1 The integer variable defines the final load of bin i (kg)
Pi 18; 20; 21; 23; 38–41 4.1; 4.2 The integer variable defines the pick up time of bin i (minutes)
Yt - 5 List of visited bins by truck t
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4.1. Cost-Based Optimization Model

The objective of the cost-based optimization model is to minimize the cost of waste collection.
The objective function in Equation (1) is broken down into the cost components in the set of constraints
starting Equation (2). The following parameters contribute to the cost of waste collection: gas mileage,
human resource and penalty due to excessively-loaded bins.

Minimize Cost (1)

subject to
Cost− G · d− τ · H · ht −

M

∑
i=1

(Fi −Λi) · ρi = H ·W ·M · N · ht + D ·M (2)

d−
N

∑
t=1

dt = 0 (3)

τ −
N

∑
t=1

τt = 0 (4)

dt −
M

∑
n=1

M

∑
i

M

∑
j 6=i

∆ijXnt
ij = Ît + It + h̄, ∀t ∈ N (5)

τt − dt/S = Rt, ∀t ∈ N (6)

It −
M

∑
i=1

Qt
i1 · ri = 0, ∀t ∈ N (7)

Ît −
M

∑
n=1

M

∑
i=1

(Qt
i+1,n+1 −Qt

in) · ∆i = 0, ∀t ∈ N (8)

Equations (3)–(8) formulate the distance-related constraints. Equations (3) and (4) define the total
distance and total collection time (i.e., route length), respectively. In addition, Equations (5) and (6)
define the distance and time covered by each truck. The next constraint in Equation (7) represents the
distance from the central station to the first bin. Finally, the constraint in Equation (8) formulates the
distance from the last bin to the disposal area.

Xnt
ij −Qt

in ≤ 0, ∀j ∈ M, ∀n ∈ M, ∀t ∈ N (9)

Xnt
ij −Qt

jn+1 ≤ 0, ∀j ∈ M, ∀n ∈ M, ∀t ∈ N (10)

Qt
in + Qt

jn+1 − Xnt
ij ≤ 1, ∀j ∈ M, ∀n ∈ M, ∀t ∈ N (11)

The optimization model requires formulating the conditional variable that denotes whether bins i
and j are picked up by truck t at the n-th and (n + 1)-th order, respectively. This can be formulated
as the multiplication of the two variables, i.e., (Qt

in × Qt
in+1). The non-linearity in Qt

in × Qt
jn+1 is

linearized by the constraints in (9)–(11). The first two inequalities ensure that Xnt
ij will be zero if either

Qt
in or Qt

in+1 is zero. The last inequality ensures that Xnt
ij will be equal to one, only if both binary

variables are one. However, this will linearize Xnt
ij without violating any of the other constraints.

M

∑
n=1

N

∑
t=1

Qt
in = 1, ∀i ∈ M (12)

M

∑
n=1

M

∑
i=1

N

∑
t=1

Qt
in = M (13)
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M

∑
i=1

Qt
in ≤ 1, ∀n ∈ M, ∀t ∈ N (14)

M

∑
n=1

M

∑
i=1

Qt
in − bt = 0, ∀t ∈ N (15)

M

∑
n=1

M

∑
i=1

Xnt
ij = bt − 1, ∀t ∈ N (16)

M

∑
n=1

M

∑
i=1

(Qt
in · δi + λi · Ht

in) ≤ Ct, ∀t ∈ N (17)

Pi − (1−Qt
in) ·UB ≤ Ht

in, ∀i ∈ M, ∀n ∈ M, ∀t ∈ N (18)

Ht
in ≥ 0, ∀i ∈ M, ∀n ∈ M, ∀t ∈ N (19)

The next set of equations denotes the capacity constraints: Equation (12) ensures that bin i can
be collected only by one truck. Equation (13) guarantees that all bins must be collected; and the
constraint in Equation (14) ensures the following: given truck t, order n can be set to bin i at most
once. The constraint set in Equations (12)–(14) ensures that all bins can be visited only once in
consecutive order.

The constraint in Equation (15) defines the number of collected bins by each truck, whereas
the constraint (16) defines the number of trips made between two consecutive bins. The constraint
in Equation (17) ensures that the total bins collected by truck t will not exceed the truck capacity.
Similar to the constraints above, the product of the binary variable Qt

in with the integer variable Pi
(pickup time of bin i) is linearized where Ht

in denotes the product, i.e., Ht
in = Qt

in × Pi. Equation (18)
ensures that Ht

in will have the same value as Pi if Qt
in is one, and zero otherwise. Equation (19) ensures

that Ht
in will have a non-negative value. Similarly, Equations (21) and (22) solve the non-linearity in

Equation (20) the same as the way Equations (18) and (19) do.
Equation (20) formulates the pickup time of bin i by summing the time distance between bins i and

j (i.e., tij), pickup time of the previous bin Pj and the time needed to reach the first bin from the central
station. Equation (23) defines the final load of bin i by adding the current load (i.e., the multiplication
of the pickup time and arrival rate) of the bin to the initial load.

Pi −
M

∑
j 6=i

(Xnt
ij · tij)−

M

∑
j 6=i

Vt
jn − (Qt

i1 · Ti) = 0, ∀t ∈ N, ∀i ∈ M, ∀n ∈ M, n > 1 (20)

Pi − (1−Qt
in−1) ·UB ≤ Vt

jn, ∀i ∈ M, ∀n ∈ M, ∀t ∈ N (21)

Vt
jn ≥ 0, ∀i ∈ M, ∀n ∈ M, ∀t ∈ N (22)

Fi − (Pi · λi) = δi, ∀i ∈ M (23)

4.2. Delay-Based Optimization Model

In the delay-based ILP model, the constraints in Equations (27)–(42) share the same functionality
as the cost model constraints. However, Equation (26) defines the objective function to minimize the
truck delay based on the travel time between two consecutive bins, travel time from the central station
to the first bin, travel time from the last bin to the dumping area, travel time from the dumping area
to the central station, the time needed to empty the bins and time required to unload the truck in the
dumping area.

Minimize Delay (24)

subject to
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Delay−
N

∑
t=1

Delayt = 0 (25)

Delayt −
M

∑
n=1

M

∑
i

M

∑
j 6=i

tijXnt
ij − btW = (It + Ît + h̄)/S + Rt, ∀t ∈ N (26)

Xnt
ij ≤ Qt

in, ∀i ∈ M, ∀j ∈ M, ∀n ∈ M, ∀t ∈ N (27)

Xnt
ij ≤ Qt

jn+1, ∀i M, ∀j ∈ M, ∀n ∈ M, ∀t ∈ N (28)

Qt
in + Qt

jn+1 − Xnt
ij ≤ 1, ∀i ∈ M, ∀j ∈ M, ∀n ∈ M, ∀t ∈ N (29)

M

∑
n=1

M

∑
i=1

Xnt
ij = bt − 1, ∀t ∈ N (30)

M

∑
n=1

N

∑
t=1

Qt
in = 1, ∀i ∈ M (31)

Ît =
M

∑
n=1

M

∑
i=1

(Qt
i+1,n+1 −Qt

in) · ∆i, ∀t ∈ N (32)

It =
M

∑
i=1

Qt
i1 · ri, ∀t ∈ N (33)

M

∑
n=1

M

∑
i=1

Qt
in = bt, ∀t ∈ N (34)

M

∑
i=1

Qt
in ≤ 1, ∀n ∈ M, ∀t ∈ N (35)

M

∑
n=1

M

∑
i=1

N

∑
t=1

Qt
in = M (36)

M

∑
n=1

M

∑
i=1

(Qt
in · δi + λi · Ht

in) ≤ Ct, ∀t ∈ N (37)

Pi −UB(1−Qt
in) ≤ Ht

in, ∀i ∈ M, ∀n ∈ M, ∀t ∈ N (38)

Ht
in ≥ 0, ∀i ∈ M, ∀n ∈ M, ∀t ∈ N (39)

Pi −
M

∑
j 6=i

(Xnt
ij · tij)−

M

∑
j 6=i

Vt
jn − (Qt

i1 · Ti) = 0, ∀t ∈ N, ∀i ∈ M, ∀n ∈ M, n > 1 (40)

Pi − (1−Qt
in−1) ·UB ≤ Vt

jn, ∀i ∈ M, ∀n ∈ M, ∀t ∈ N (41)

Vt
jn ≥ 0, ∀i ∈ M, ∀n ∈ M, ∀t ∈ N (42)

5. Heuristics for WSN-Based Waste Management in Smart Cities

This section describes three heuristic solutions addressing the efficient waste management
problem, namely: (1) Closest Vehicle First (CVF), (2) Collect based on Upper Threshold (CUT)
and (3) Collect based on Upper and Lower Threshold (CULT). The notations for the constants and
inputs presented in Table 1 are also used while describing the heuristics.

5.1. Closest Vehicle First: A Locality-Based Baseline Solution

The CVF model is constructed to address the problem of the waste management by providing an
efficient route for the given set of bins that reached their thresholds and raised alarms. In this approach,
bins are visited if and only if they raised alarms, so as to reduce the cost by not visiting unnecessary
bins that contain an insignificant amount of waste.
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The CVF model works as follows: Trucks remain in ready mode to pick up bins until an alarm
is raised. Bin i triggers the alarm when the waste level reaches the upper threshold Ψi. When the
number of raised alarms reaches K, the cloud constructs a route (B) between the triggered bins and
sends it to a truck t through the base station. The route construction is based on Dijkstra’s shortest path
algorithm. The constructed route is assigned to an available truck. However, if there is no available
truck, the cloud assigns the route to the closest truck. The formed route is appended to the selected
truck’s current route. The truck goes directly to the disposal area when it reaches the capacity Ct

and stays ready for the next trip. When the truck goes to the disposal area, if there are bins that are
assigned to it, but not served, those bins are assigned to the other trucks. If the load of the truck has
not reached Ct and all bins have been visited on the route, a new route is constructed from the list B
and assigned to the truck considering the current load of the truck. The flowchart of this model is
presented in Figure 2.

Figure 2. Closest Vehicle First (CVF) flowchart.

5.2. Proposed Nearly-Optimal Heuristics

In order to address the problem of the waste management, two other nearly optimal heuristics,
CUT and CULT, are introduced, and details are given in this section.
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5.2.1. Collect Based on Upper Threshold

The CUT model is constructed to address the problem of the waste management by providing an
efficient route differently than CVF. This approach tries to reduce the cost by making the route more
optimal. In this approach, visited bins are not only the ones that raised alarms, but also the ones that
are on the assigned route and have not triggered the alarms. The reason behind this is to reduce the
unnecessary trips of a truck to collect the waste from the bins.

The first part of CUT is constructed in the same way as CVF, which was presented earlier. Until
the construction of the first route, the algorithm behaves in the same manner. While the CVF approach
collects the closer bins that raised the alarms, the CUT method aims to collect the bins that are on the
same assigned route even though they have not triggered the alarms. Trucks that visit the disposal
area or that are assigned new routes operate in the same manner as in CVF. The flowchart of the CUT
is presented in Figure 3.

Figure 3. Collect based on Upper Threshold (CUT) flowchart.
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5.2.2. Collect Based on Upper and Lower Threshold

The CULT model is developed to address the problem of the waste management by improving
the efficiency of the route construction that was presented by the previous approaches. This approach
tries to reduce the cost by making the route more optimal and removing unnecessary visits to the bins
with an insignificant amount of waste. In this approach, visited bins are not only the ones that raised
alarms, but also the ones that are on the way to the bins that generated alarms. However, different
from the CUT approach, there is a decision point in order to visit a bin, which has not triggered an
alarm. The reason behind this behaviour is to reduce the unnecessary service given to the passed-by
bins that contain a negligible amount of waste. Hence, it aims at cost reduction. For the mentioned
decision, a new parameter defining a lower threshold value for the waste amount (ψi) is introduced.

CULT is constructed in the same manner as the CUT model presented previously. However,
when truck i is assigned a route, it checks the bins that are accessible on the way from the current
location to the next bin on the route. However, the decision about whether or not to add new bins
on-the-fly depends on their current waste levels. Only the bins that are on the way and having a waste
amount higher than ψi are candidates for pick up by truck i. Trucks visiting the disposal area or those
being assigned new routes follow the same steps as CVF and CUT. The flowchart of CUT is presented
in Figure 4.

Figure 4. Collect based on Upper and Lower Threshold (CULT) flowchart.
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6. Performance Evaluation

The optimization toolbox in MATLAB has been used to solve both MILP models (cost and
delay) [33]. The simulation environment for heuristic methods that are presented in this paper is a
Java-based home-grown simulator. It is worth noting that the optimization models aim to provide
a performance guideline for the heuristics and are not envisioned to be run in real-time scenarios.
As a matter of fact, large map scenarios such as those with more than 15 bins would require fast
heuristics as opposed to optimization models due to the high computational complexity of those
formulations. In the next two subsections, detailed settings and results are presented along with a
thorough discussion.

6.1. Simulation Settings

The simulation settings are given in Table 2, and they describe the values used in the optimization
models. The central station, which is the start and end point, hosts two trucks that participate in the
waste collection process. Each truck has ht = 3 workers, who get paid H= 39 AC/h, and moves with
speed S = 20 km/h. In addition, the workers collect waste from a bin in W = 2.5 min with a cost
D = 1.62 AC/bin. Moreover, the truck gas mileage costs 20 AC/km (i.e., G). Each truck goes to the landfill
to empty the collected waste and prepare for the next bins’ alarm in 12 min (i.e., Rt). The distance from
the landfill area to the central station (h̄) is set to 250 m. In the case of an overflowed bin, an additional
cost of ρi = 5AC is added as a penalty. However, a small map scenario with M = {5, 10, 15} bins and waste
arrival rate λi = {1, 3, 5, 7} kg/5 min was considered in order to compare the proposed approaches
with both optimization models (cost and delay), as shown in Section 6.2.1. In the given scenario,
the truck and the bin have a maximum capacity Ct = 400 kg and Λi = 20 kg, respectively. On the other
hand, the larger map scenario considers M ∈ {20, 40} bins, a waste arrival rate of λi = {3 kg/5 min,
5 kg/5 min} and a bin capacity Λi ∈ {20 kg, 30 kg}, while the truck capacity (Ct) takes its value
from the set {400, 600} kg, as given in Section 6.2.2. Furthermore, in order to present our approaches’
suitability for the real case scenarios, the test scenarios are enhanced by getting results with larger
maps considering M = {80, 160}, a waste arrival rate of λi= 3 kg/5 min, Λi= 30 kg, while a truck
capacity (Ct) = 600 kg, as given in Section 6.2.2.
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Table 2. Performance evaluation settings.

Notations Value

Cost of emptying bin (D) 1.62 AC/bin
Cost of human resource (H) 39 AC/h
Cost of gas mileage (G) 20 AC/km
Average speed in the town (S) 20 km/h
Time needed to collect waste from a bin (W) 2.5 min
Total number of trucks (N) 2
Total number of bins (M) {5, 10, 15, 20, 40, 80, 160}
The upper bound of variable Pi (UB) 1015

The upper threshold for the waste amount of bin i (Ψi) [10–15] kg
The lower threshold for the waste amount of bin i (ψi) [5–8] kg
Penalty of the overflowed bin (ρi) 5 AC/kg
Time needed to empty truck t at the dumping area and prepare it for the next trip (Rt) 12 min
Distance from the dumping area to the central station (h̄) 2500 m
Distance between bin i and bin j (∆ij) [200–2300] m
Time needed to move from bin i to bin j (tij) [0.6–6.9] min
Distance from bin i to the dumping area (∆i) [400–2300] m
Distance from the central station to bin i (ri) [200–2300] m
Average waste arrival rate at a bin (λi) {1, 3, 5, 7} kg/5 min
Number of workers in a truck (ht) 3
Maximum capacity of a bin (Λi) {20, 30} kg
Initial load for bin i (δi) [0–30] kg
Maximum capacity of a truck (Ct) {400, 600} kg
Time from the central station to the first bin i (Ti) [0.6–6.9] min
Initial load of a truck t (ct) [0–600] kg
Threshold for the count of bins that have alarmed (K) {1,2,3}
Number of bins that have alarmed (k) [0–160]
Alarm status of bin i (Ai) {On, Off}

6.2. Simulation Results

In this section, the proposed waste collection approaches are evaluated to investigate how well
the proposed solutions align with the optimization model results. The first subsection compares the
two heuristics and the optimization model results for some small-scale scenarios. However, due to the
inefficiency of the ILP solver under large maps, the second subsection shows more complex scenarios
using larger maps and the comparison of the proposed heuristic approaches.

6.2.1. Optimality Assessment of the Heuristics

In order to evaluate the optimality of the proposed approaches, a comparison among the
optimization model, CVF and CUT approaches is presented. Two criteria were considered in the
comparison, namely the total cost and delay, as shown in Figures 5 and 6, respectively. Moreover,
the comparison shows the influence of changing the number of bins and the waste arrival rate
on the cost value and delay time. Figure 5 presents the total cost for three different bin scenarios
(i.e., the number of bins is either 5, 10 or 15) and four different waste arrival rates starting from
lighter values to more aggressive values (1 kg/5 min, 3 kg/5 min, 5 kg/5 min and 7 kg/5 min).
The results show that the cost increased either when the number of bins increased or the waste arrival
rate became more aggressive. However, the CVF and CUT approaches became very close to the cost
optimization result with an arrival rate of 1 kg/5 min for all bin scenarios. With higher waste arrival
rates, the penalty value increased since the bins could end up overflowing rapidly. Hence, the gap
between the optimal solution and the two heuristic approaches became larger particularly under
the arrival rate of 5 kg/5 min and 7 kg/5 min. It is definitely not realistic to have such high arrival
rates, so we would like to present how aggressive arrival rates significantly increased the cost due to
the penalties.
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Figure 5. An overview of the system model.

A second criterion used to evaluate the proposed approaches was delay. To be coherent with
the other performance comparisons, we considered the same bin scenarios (i.e., the number of bins
is either 5, 10 or 15) and the same waste arrival rates (1, 3, 5 and 7) kg/5 min. Figure 6 shows the
total delay of both trucks that participated in the waste collection process. In contrast to the cost
model, the delay value was poorly affected by varying the waste arrival rate; however, varying the
number of bins increased the total delay since the trucks needed more time to empty all the bins.
The comparison shows that CUT had better results compared to CVF, particularly under the scenario
with a higher number of bins. As a conclusion, both figures show that CUT is a better candidate in
waste collection operation.

Figure 6. An overview of the system model.

6.2.2. Feasibility Study of Heuristics

In order to compare the effectiveness and efficiency of the heuristic methods, several scenarios
were applied to the simulation environment. In the simulation environment, the arrival process of the
waste was formulated based on the Poisson distribution. Under multiple runs, distinct instances of the
bins were obtained. For each scenario, the results were calculated as the average of five different runs.
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For the comparisons, two maps, which included 20 and 40 bins, were used. The map containing
40 bins was two-times larger than the 20-bin map. The map with 40 bins is presented in Figure 7.
On the map, the central truck station is where the trucks start their routes, and the disposal area is
the point where trucks visit upon reaching their capacity upper limit. Each vertical segment of the
grid is 200 m long, and each horizontal segment is 300 m long. Bins are marked with red rectangles
on the map. In each scenario, two trucks were employed. Three different arrival rates, which were
1 kg per 5 min, 3 kg per 5 min and 5 kg per 5 min, were used. For these settings, increasing the bin
capacity from 20 kg to 30 kg and increasing the truck capacity from 400 kg to 600 kg were observed
separately. Each scenario was solved by the CVF, CUT and CULT methods. In order to compare these
three methods, cost, delay per route and the number of trips values were used. Total cost was obtained
for 12 h. Delay per route was obtained by dividing the total time that trucks needed to visit the bins by
the route count for 12 h. Instead of total delay, the delay per route metric was employed.

Figure 7. Bin deployment map.

In the first two figures, Figures 8 and 9, cost values are observed under the arrival rate of 3 kg per
5 min. In the first figure, Figure 8, the change is observed for bin capacity being increased from 20 kg
to 30 kg. In Figure 9, the impact of truck capacity being increased from 400 kg to 600 kg is depicted.
The increase in the bin count improved CUT when compared to CULT and CVF. For the 20-bin case,
both methods similarly increased their performance in comparison to CVF in terms of cost. Under the
40-bin case, CUT and CULT performed better than CVF and provided a more efficient solution in terms
of cost. However, increasing bin capacity did not introduce further improvements to the performance
CUT and CULT in comparison to CVF. CUT provided a 14% better solution than CVF, whereas CULT
provided a 0.07% better solution than CVF. When the bin capacity increased, the difference between
the threshold value that triggered the alarm and the bin capacity increased, as well. This resulted in
trucks having a longer period of time to visit that bin before the waste started to spread and caused
the penalty. Collecting the waste from the bins that have not yet triggered alarms caused longer delay
values for the ones that had alarmed to be collected. This increased the penalty for CUT and CULT.
When there was not enough time between the alarm threshold being reached and bin capacity being
met, the decision mechanism can affect the solution by decreasing the total cost, and vice versa.
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Figure 8. Cost: bin count when the bin capacity was increased.

Figure 9. Cost: bin count when the truck capacity was increased.

When increasing truck capacity under the 20-bin case in Figure 9, all three methods provided
reasonable solutions. CVF performed the best, and for CUT and CULT, the difference from CVF
increased in a negative way. Under the 40-bin case, CUT performed the best, and increasing truck
capacity made CULT perform worse than CVF. Under the lower truck capacity, both CUT and CULT
performed better than CVF. Moreover, the improvement of CVF by CUT decreased when the truck
capacity was increased. Increasing truck capacity was expected to decrease the total cost in general
depending on the trip count decrease and observed as expected for the map with 20 bins. However,
when there were 40 bins on the map, increasing truck capacity caused higher cost values. This was
due to the more non-optimal routes. The distance between bins could be higher in the wider area,
and when the truck could not reach its capacity, it needed to wait for new triggers to be generated.
This led to longer distances for the trucks to visit. Moreover, visiting further bins caused other bins on
the route to spread waste around and cause penalties.

In the following two figures, Figures 10 and 11, the change in bin capacity and truck capacity is
studied under the arrival rate of 5 kg per 5 min. When the arrival rate increased, the results became
closer to each other. The bins that did not trigger, but on the way of a truck that was assigned a
route were highly probable to have generated a trigger at the next arrival of waste. Therefore, adding
these kinds of bins independently of ψi to the route increased the efficiency in terms of cost and delay.
Moreover, selecting closer Λi, λ, Ψi and ψi resulted in similar cost and delay results. In the scenarios
applied, ψi was set to Λi/4 and Ψi was set to Λi/2. For Λi = 20, and λ = 5 kg/5 min, ψi = 5; when a
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bin received an amount of waste, it reached the ψi directly. This removed the difference between CUT
and CULT methods in this scenario. For the 5 kg/5 min arrival rate scenario, increasing bin capacity
decreased the total cost for all methods, but did not have a significant impact on the comparison of the
three algorithms.

However, increasing truck count caused a more significant impact on the cost values, which can
be seen from Figure 11. Increasing truck capacity increased the total cost in general for both maps
containing 20 and 40 bins. However, in the 40-bin case, the improvement of the CUT and CULT
according to CVF increased. They both performed better in each situation, but they increased the
efficiency percentages that they provided when compared to CVF.

The change in the settings provided less difference in delay when compared to cost values. Delay
per route values was effected by how well the route was optimized and how close the visiting bins
were. When the delay was decreased, it could be said that the route was more optimized in those
simulations with the provided configuration settings. The following four figures are presented to show
the comparison in terms of delay per route.

Figure 10. Cost: bin count when the bin capacity was increased.

Figure 11. Cost: bin count when the truck capacity was increased.

In Figure 12, the increasing bin capacity affect can be seen for the 20-bin and 40-bin maps with the
arrival rate of 3 kg per 5 min. The impact was very small; however, in general, the CVF provided the
shortest and CUT provided the longest delay per the route values. It is seen in Figure 8 that CUT was
the most effective among the three algorithms on the 40-bin map. Therefore, CUT can be chosen as a
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solution when the time is not important, but the cost efficiency is more important. When time is the
most important metric, CVF can be chosen. This was the result of CUT providing more optimal routes
for each truck. Since trucks visited any other bin on the way to the alarmed bins, trucks did not have
to go further first and come back again for the bins that they passed by before. Furthermore, when
the bin count was increased, the delay per route values decreased, and this meant that the algorithms
could work better and manage more optimal routes when the area was wider and there were more
triggers coming from the bins in a time window. When there were less bins on the map, the possibility
of getting many triggers at the same time decreased, and getting less triggers would cause the bins to
be added on the route in an unoptimized manner.

Figure 12. Delay per route: bin count when the bin capacity was increased.

In Figure 13, the increase in truck capacity can be seen at the arrival rate of 3 kg per 5 min. It is
observed that when the truck capacity was increased, the delay per route increased. This is precisely
the expected result to be observed, since there was more capacity that one truck could collect, and it
visited more bins in a route. Moreover, increasing truck capacity resulted in more effective performance
of CVF and less effective performance of CULT, which was the opposite condition of the lower truck
capacity scenario.

Figure 13. Delay per route: Bin count when the truck capacity was increased.

In the following figures, Figures 14 and 15, the scenarios where the arrival rate was 5 kg/5 min
are presented. The delay per route values was smaller in general when compared to Figures 12 and 13.



J. Sens. Actuator Netw. 2018, 7, 29 21 of 29

Since the arrival rate was increased, the collected bins had higher amount of wastes stored in them.
This resulted in a shorter time for the trucks reaching their capacity. In Figure 14, the affect of bin
capacity increase is shown. Increasing the truck capacity effected smaller map scenarios more than
the wider area map. In the first section on the left, the biggest impact can be observed by the CULT,
and while CULT and CVF were performing better, CUT increased the delay per route value for the
smaller area case. For the wider area, all the methods performed better and provided smaller delay
values when the bin capacity was increased.

In Figure 15, the effect of truck capacity increase is shown. The increase in delay per route values
in all cases where the truck capacity was increased independently of other configuration settings was
the natural result. For this figure, where the arrival rate was 5 kg/5 min and the bin capacity was
30 kg, increasing the truck capacity from 200 kg to 400 kg did not change the order of the effectiveness
of the three algorithms. CVF provided the smallest delay per route values, and CUT provided the
longest ones.

Figure 14. Delay per route: bin count when the bin capacity was increased.

Figure 15. Delay per route: bin count when the truck capacity was increased.

As the last comparison metric, the number of routes in each scenario are shown in the following
four figures.

In Figures 16 and 17, the arrival rate is 3 kg/5 min, and the simulation is observed for 20 bins
and 40 bins maps. First, in Figure 16, the increase in bin capacity is presented. The highest route
number was always in CVF, and the lowest was in CUT. However, the difference between the methods
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is more visible and observable when the wider map was used. Route count being small meant that
each trip took a longer time for that method, and a trip took longer when the bins either had a small
amount of waste inside in each collection or the routes that the trucks were assigned to were not that
optimal. The increase in the bin capacity increased the number of routes in both cases when there were
20 or 40 bins. The reason behind this behaviour was that the thresholds were set according to the bin
capacities (Λi’s), which is Λ/2. Once an alarm has been triggered, the bin had a greater amount of
waste to be collected. This consumed the truck capacity more quickly and resulted in higher values of
route counts.

In Figure 17, the increase in the truck capacity is presented. In this figure, like the previous one,
CUT had the smallest number of routes, and CVF had the most number of routes. Again, the difference
among them is more visible when the map has 40 bins. For both maps, when the truck capacity
increased, the route number decreased. With the increased truck capacity, one truck could hold more
waste in a single trip, which precisely resulted in the decrease in the number of routes.

For the following two figures, Figures 18 and 19, the arrival rate is set to 5 kg/5 min, and the maps
with 20 and 40 bins are observed under increasing bin capacity or truck capacity. First, in Figure 18,
the increase in the bin capacity is observed.

In Figure 19, the increase in the truck capacity is tested under the 5 kg/5 min arrival rate setting.
The increase in the truck capacity decreased the count of routes as explained before. For these scenarios,
again, the highest number of routes was observed by applying CVF, whereas the lowest number of
routes were observed under CUT and CULT.

In the following Table 3, total cost, delay per route and number of route counts are presented
when λ = 1 kg/5 min. The applied scenarios are the same as the previous cases. The increase in Λi and
Ci were tested on two maps containing 20 and 40 bins.

Figure 16. Number of routes: bin count when the bin capacity was increased.
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Figure 17. Number of routes: bin count when the truck capacity was increased.

Figure 18. Number of routes: bin count when the bin capacity was increased.

Figure 19. Number of routes: bin count when the truck capacity was increased.
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Table 3. Cost when λ = 1 kg/5 min.

Method Bin Count Bin Capacity (kg) Truck Capacity (kg) Cost (AC) Delay per Route No. of Routes

CVF 20 20 400 5354.16 193.78 5.8
CUT 20 20 400 6246.67 205.16 6

CULT 20 20 400 5542.85 199.41 5.8
CVF 20 30 400 4343.99 155.17 5.8
CUT 20 30 400 4953.32 187.85 5.6

CULT 20 30 400 4229.57 143.68 6.2
CVF 20 30 600 4189.10 305.8 2.8
CUT 20 30 600 4936.05 345.12 3

CULT 20 30 600 4134.74 330.23 2.6

CVF 40 20 400 11,188.28 109.36 12
CUT 40 20 400 14,950.88 126.79 10

CULT 40 20 400 11,801.55 112.27 11.6
CVF 40 30 400 5926.93 104.85 12
CUT 40 30 400 11,722.18 116.95 10.4

CULT 40 30 400 6634.55 104.22 12
CVF 40 30 600 5665.45 158.35 8
CUT 40 30 600 11,579.94 17,726 7

CULT 40 30 600 6066.07 157.86 8

In Table 3, the first part presents the results on the map with 20 bins. When Λi and Ci were lower,
the CVF results were more efficient in terms of cost. However, increasing these parameters separately
resulted in more efficient solutions when compared to CULT. Since λ was small, there was enough
time for the trucks to visit bins that had alarmed and collect the ones on their way according to the
decision mechanism in CULT. Delay per route values were similar for CVF and CULT in most cases.
As the truck capacity increased, the difference between them started to become wider. In addition,
CUT yielded longer durations for a single trip in each scenario on the smaller map. The number of
routes was quite similar on the smaller map. Comparing the methods for this particular performance
metric on the wider map was more worthwhile.

When the simulation scenarios were tested on the map with 40 bins, CVF demonstrated the most
competent performance, whereas CUT resulted in the worst solutions in terms of cost. Increasing Λi
and Ci also increased the gap between CVF and its counterparts. Delay per route under CVF and that
under CULT on the wider map were quite similar. CUT exhibited a longer delay time per route, which
meant adding new bins on-the-fly ended up increasing the delay by collecting waste from bins that
did not have a significant amount of waste accumulated. Delay per route may not significantly change
when the bin capacity was increased. Thus, trip durations mostly depended on the truck capacity.
Similar to the delay performance, the number of routes that trucks had in a single simulation run was
smaller under CUT. Since trucks travelled longer in a single trip and the total delay did not change
significantly, the number of routes was smaller under CUT. Moreover, the route numbers almost never
changed under CVF and CULT. Besides, increasing the truck capacity had a direct impact on the route
count, but not the bin capacity.

In order to present our approaches’ suitability to real-life scenarios, the test scenarios were
modified to show results with larger maps that contained more bins. Three additional larger maps
were used: (1) the map given in Figure 7 for the 40-bin scenario was modified, and 40 more bins (total
of 80 bins) were deployed to the region; (2) the map given in Figure 7 was duplicated in terms of the
area and the number of bins; moreover, a third map of 160 bins was constructed. All three approaches
(i.e., CVF, CUT and CULT) were tested using these three maps with the following parameter settings:
bin capacity (Λi = 30 kg), truck capacity (Ct = 600 kg), waste arrival rate (λi= 3 kg/5 min) and the
number of trucks (N = 2). These scenarios were compared based on their total cost, delay per route
and the number of routes. The results are presented in Figures 20–22.
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Figure 20. Cost: bin count as the number of bins increased.

Figure 20 shows the total cost obtained under these three scenarios. CUT outperformed its
counterparts, CULT and CVF. As mentioned earlier in this section, under the moderate arrival rate,
as the map became larger, CUT tended to provide more cost-efficient solutions. As expected, increasing
map size and the number of bins increased the total cost for all methods. Definitely, the higher the
number of bins, the higher the number of triggers during a certain period of time. On the other hand,
by considering more triggers when making decisions, the routes could be constructed more efficiently
(leading to consecutively visited bins becoming closer). Hence, better cost values were achieved, and as
we increased the area, we did not observe a remarkable increase in the total cost values obtained.

Figure 21. Delay per route: bin count as the number of bins increased.
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Figure 22. Number of routes: bin count as the number of bins increased.

Figures 21 and 22 present the delay per route and the number of routes, respectively, calculated
for the same three scenarios. In terms of total delay, CUT provided the most efficient results for all three
scenarios with two trucks. However, the number of routes was the lowest for CUT and highest for CVF.
Moreover, total delay did not change significantly as observed for the previous cases. Hence, CVF
resulted in the smallest delay per route. Previously, it was observed that the delay per route decreased
as the area became larger due to the increase in the route counts. The results of 80-bin and 160-bin
scenarios also supported this. As the number of routes increased, shorter routes were established since
collected bins became closer to each other and the trucks reached their capacity limits quickly.

As for the complexities of these three methods, the Big O notation is applied. All three methods
use Dijkstra’s algorithm to generate the shortest path from the given weighted adjacency matrix.
The weights are the distances between the nodes, which represent the bins. Dijkstra’s algorithm
calculates the shortest distance, but does not calculate the path information. It is modified for the
simulation environment to show the shortest path between any given two nodes for the methods
CUT and CULT. At the beginning of the simulation, Dijkstra’s algorithm runs and constructs a
matrix representing the distances between any two points. For CUT and CULT, an additional matrix
representing the path information between any two nodes is constructed. Dijkstra’s algorithm is
not covering to negative weighted edges, and Bellman–Ford algorithm can be used in that case and
improve the constructed route for a truck in the simulation environment. The time complexity of
Dijkstra’s algorithm is O(V2), where V denotes the number of vertices in a connected graph.

If binary heap representation were used, it might have improved the complexity and have reduced
it to O(ElogV), E being the edge count and V being the number of vertices. This complexity is for
constructing the matrices at the beginning. Time complexity for adding a bin to the route is O(M), M
representing the bin count. Time complexity for checking the bins on the shortest path in CUT and
CULT is O(M). In summary, all three methods have the time complexity of O(V2), where V denotes
the number of vertices in a connected graph.

According to the results, when the bin capacity and bin threshold’s (Ψi, δi) had a high difference
compared to each other, in the small sized area with smaller arrival rates (λ), CVF gave a more efficient
solution compared to CUT and CULT. This means there was enough time for the trucks to reach the
bins that raised alarms before waste was spread on the ground. The penalty values for spread waste
affected the total cost in terms of the spread waste amount. In this situation, collecting the waste from
the bins that did not raise an alarm, even if they were on the way of the truck, increased the total cost
and delay values since dumping a single bin had its own cost and time consumption. CUT gave the
least efficient solution among them. CULT provided a better solution and became closer to the the
solution of CVF if the truck capacity also increased. This was the result of a decrease in the number of
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trips to the disposal area. When truck capacity was higher, the trucks could pick up more bins in one
trip. The additional bins that did not raise an alarm, but were picked up on the way did not occupy a
significant amount of space in the truck when Ci was higher. It is worth noting that the longest path
was the ones between the disposal area and the central station (h), and also, the most time-consuming
activity was emptying the waste at the disposal area and making the truck ready for the next trip (Rt),
so increasing the trip count increased the cost and delay significantly.

In larger maps, with higher Λi and proportional λ, the proposed heuristic CULT provided more
efficient solutions regarding cost and delay. However, when the constants became closer and the map
became smaller, CVF and CUT tended to ensure better solutions. The increase in the Ci had more
impact on the results when the map and the λ were larger.

7. Conclusions

Wireless sensor and actuator networks in smart cities are essential for acquiring unique data that
should be processed, analysed and used for decision-making/support systems that can improve the
quality of life for the citizens. Among smart city services and applications, waste management has
been challenging, and emergent, since its impacts are two-fold: quality of living and municipal costs.

In this paper, we have proposed a framework that aims at providing a sensor-driven waste
management system by mainly providing trajectory assistance for the municipal agents (i.e., vehicles
such as trucks) that are deployed for waste collection. In the proposed waste management system,
a passive sensor is deployed in a particular bin to monitor the waste level. Besides the dedicated
sensors, a cloud platform is responsible for the collection of the acquired sensor data, pre-processing,
analysing and possibly presenting them to the end user. In the case of an exceeded threshold of
the waste level, an actuator raises an alarm indicating the need to schedule a pickup. The pickup
process is not as straightforward due to the following reasons: (1) Alarms may be triggered by
multiple actuators; thus, the cloud platform, where sensory reports, as well as alarms are received
and processed, is expected to run a schedule. (2) As the deployment of municipal agents is a costly
process, the platform has to decide on whether or not to collect the waste in the bins that have not
reached the pickup threshold yet. To address these problems, we have formulated two ILP models to
form lower bounds in terms of the delay and cost performance. Furthermore, in order to emulate the
behaviour of the ILP formulations, a greedy algorithm, Closest Vehicle First (CVF), and two heuristic
solutions have been proposed, namely Collect based on Upper Threshold (CUT) and Collect based on
Upper and Lower Threshold (CULT). The former defines an empirical upper threshold for collections,
whereas the latter further checks whether the load level of a bin is below a lower threshold so as to
postpone the collection process to an upcoming alarm. Through simulations, we have shown that
the ILP formulations can provide cost and delay lower bounds for all three algorithms. Furthermore,
the proposed heuristics CUT and CULT can reduce the cost under the greedy pickup schedule by
(up to) 16.7% and 8.3% in the presence of a small number of bins. Moreover, under the same settings,
we have also shown that CUT and CULT can reduce the delay of the greedy pickup by 4.6% and
3% in terms of delay, respectively. Last but not least, the greedy heuristic CVF is more favourable in
large-scale scenarios when the covered region has 20 of more bins regardless of the waste arrival rate.
As mentioned earlier, the optimization models are employed in urban areas, relying on reasonable
waste arrival rates for the cities. Therefore, it is rare to have accumulative wastes in the bins for
multiple consecutive days. Furthermore, Equations (13) and (36) ensure that all bins must be collected.
Moreover, CUT ensures that all the bins, regardless of having raised alarms, on the same assigned
route to the truck will be collected along with those residing on the same route. However, the model
can be extended to include rural areas with very low arrival rates by adding a time counter for those
bins that have not been collected for more than T days, where T can be set by the operator.

Our ongoing and future agenda includes multiple directions. Currently, we are working on
building a multi-objective optimization and heuristics to meet various targets with the same decision
support system. In the medium run, we will also integrate the latency and reliability of communication
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between the dedicated sensors and the cloud platform. In a longer time frame, we will develop
an all-in-one integrated system that takes communication constraints, as well as financial- and user
experience-related parameters into account. Moreover, the model can be extended to include rural
areas with very low arrival rates by adding a time counter for those bins that have not been collected
for more than T days, where T can be set by the operator.
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